1,044 research outputs found

    Unsteady turbulent buoyant plumes

    Get PDF
    We model the unsteady evolution of turbulent buoyant plumes following temporal changes to the source conditions. The integral model is derived from radial integration of the governing equations expressing the conservation of mass, axial momentum and buoyancy. The non-uniform radial profiles of the axial velocity and density deficit in the plume are explicitly described by shape factors in the integral equations; the commonly-assumed top-hat profiles lead to shape factors equal to unity. The resultant model is hyperbolic when the momentum shape factor, determined from the radial profile of the mean axial velocity, differs from unity. The solutions of the model when source conditions are maintained at constant values retain the form of the well-established steady plume solutions. We demonstrate that the inclusion of a momentum shape factor that differs from unity leads to a well-posed integral model. Therefore, our model does not exhibit the mathematical pathologies that appear in previously proposed unsteady integral models of turbulent plumes. A stability threshold for the value of the shape factor is identified, resulting in a range of its values where the amplitude of small perturbations to the steady solutions decay with distance from the source. The hyperbolic character of the system allows the formation of discontinuities in the fields describing the plume properties during the unsteady evolution. We compute numerical solutions to illustrate the transient development following an abrupt change in the source conditions. The adjustment to the new source conditions occurs through the propagation of a pulse of fluid through the plume. The dynamics of this pulse are described by a similarity solution and, by constructing this new similarity solution, we identify three regimes in which the evolution of the transient pulse following adjustment of the source qualitatively differ.Comment: 41 pages, 16 figures, under consideration for publication in Journal of Fluid Mechanic

    Uncertainty analysis of a model of wind-blown volcanic plumes

    Get PDF
    Mathematical models of natural processes can be used as inversion tools to predict unobserved properties from measured quantities. Uncertainty in observations and model formulation impact on the efficacy of inverse modelling. We present a general methodology, history matching, that can be used to investigate the effect of observational and model uncertainty on inverse modelling studies. We demonstrate history matching on an integral model of volcanic plumes that is used to estimate source conditions from observations of the rise height of plumes during the eruptions of Eyjafjallajökull, Iceland, in 2010 and Grímsvötn, Iceland, in 2011. Sources of uncertainty are identified and quantified, and propagated through the integral plume model. A preliminary sensitivity analysis is performed to identify the uncertain model parameters that strongly influence model predictions. Model predictions are assessed against observations through an implausibility measure that rules out model inputs that are considered implausible given the quantified uncertainty. We demonstrate that the source mass flux at the volcano can be estimated from plume height observations, but the magmatic temperature, exit velocity and exsolved gas mass fraction cannot be accurately determined. Uncertainty in plume height observations and entrainment coefficients results in a large range of plausible values of the source mass flux. Our analysis shows that better constraints on entrainment coefficients for volcanic plumes and more precise observations of plume height are required to obtain tightly constrained estimates of the source mass flux

    Carbon Fiber Foam Composites and Methods for Making the Same

    Get PDF
    Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold

    Comparing content-filter techniques for stopping spam

    Get PDF
    There are many new theoretical techniques for detecting spam e-mail based upon the message contents. Although Bayesian methods are the most wellknown, there are other approaches for classifying information. This paper establishes some criteria for measuring spam filter effectiveness and compares the Boosting and Support Vector Machine approaches with some well-known existing filter software. It also examines ways of transforming e-mail messages into a form which is more readily processable by such algorithms

    VALIDATION OF INERTIAL MEASUREMENT UNITS FOR TRACKING 100M SPRINT DATA

    Get PDF
    Wearable micro sensor measurement devices are a promising development in sports technology. This paper presents preliminary data evaluating the accuracy of an inertial measurement unit during 100m sprints against a criterion measure from a tripod-mounted Laveg laser. The inertial measurement units were found to be a valid tool for the analysis of peak velocity (r = 0.92) and average split velocities for splits after the first 10m (r = 0.85 - 0.95). Validation data suggests some caution should be taken in interpretation of the first lorn split (r = 0.32). Whilst data from the two devices for this split were correlated, the inertial measurement unit showed an overestimation for this parameter in comparison to the athlete velocity as measured by the laser. Further in-depth analysis should investigate this period

    Has Molecular Docking Ever Brought us a Medicine?

    Get PDF
    Molecular docking has been developed and improving for many years, but its ability to bring a medicine to the drug market effectively is still generally questioned. In this chapter, we introduce several successful cases including drugs for treatment of HIV, cancers, and other prevalent diseases. The technical details such as docking software, protein data bank (PDB) structures, and other computational methods employed are also collected and displayed. In most of the cases, the structures of drugs or drug candidates and the interacting residues on the target proteins are also presented. In addition, a few successful examples of drug repurposing using molecular docking are mentioned in this chapter. It should provide us with confidence that the docking will be extensively employed in the industry and basic research. Moreover, we should actively apply molecular docking and related technology to create new therapies for diseases

    Simulating shallow morphodynamic flows on evolving topographies

    Full text link
    We derive general depth-integrated model equations for overland flows featuring the evolution of suspended sediment that may be eroded from or deposited onto the underlying topography ('morphodynamics'). The resulting equations include geometric corrections that account for large variations in slope angle. These are often non-negligible for Earth-surface flows and may consequently be important for simulating natural hazards. We also show how to adapt existing finite volume schemes for the classical shallow water equations, to simulate our new equations in a way that preserves uniform steady states and exactly conserves the combined mass of the flow and bed. Finally, to demonstrate our formulation, we present computations using simple example model closures, fed by point flux sources. On initially constant slopes, flows exhibit different behaviours depending on the grade. Shallow slopes lead to weakly morphodynamic spreading flows that agree well with analytical similarity solutions. On more severe slopes, rapid erosion occurs, leading to self-channelising flows and ultimately a 'super-erosive' state, in which sediment entrainment and gravitational acceleration perpetually reinforce each other.Comment: 28 pages, 8 figures, 1 tabl

    Identifying Documents In-Scope of a Collection from Web Archives

    Full text link
    Web archive data usually contains high-quality documents that are very useful for creating specialized collections of documents, e.g., scientific digital libraries and repositories of technical reports. In doing so, there is a substantial need for automatic approaches that can distinguish the documents of interest for a collection out of the huge number of documents collected by web archiving institutions. In this paper, we explore different learning models and feature representations to determine the best performing ones for identifying the documents of interest from the web archived data. Specifically, we study both machine learning and deep learning models and "bag of words" (BoW) features extracted from the entire document or from specific portions of the document, as well as structural features that capture the structure of documents. We focus our evaluation on three datasets that we created from three different Web archives. Our experimental results show that the BoW classifiers that focus only on specific portions of the documents (rather than the full text) outperform all compared methods on all three datasets.Comment: 10 page

    eIF4A Inhibition Allows Translational Regulation of mRNAs Encoding Proteins Involved in Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is the main cause of dementia in our increasingly aging population. The debilitating cognitive and behavioral symptoms characteristic of AD make it an extremely distressing illness for patients and carers. Although drugs have been developed to treat AD symptoms and to slow disease progression, there is currently no cure. The incidence of AD is predicted to increase to over one hundred million by 2050, placing a heavy burden on communities and economies, and making the development of effective therapies an urgent priority. Two proteins are thought to have major contributory roles in AD: the microtubule associated protein tau, also known as MAPT; and the amyloid-beta peptide (A-beta), a cleavage product of amyloid precursor protein (APP). Oxidative stress is also implicated in AD pathology from an early stage. By targeting eIF4A, an RNA helicase involved in translation initiation, the synthesis of APP and tau, but not neuroprotective proteins, can be simultaneously and specifically reduced, representing a novel avenue for AD intervention. We also show that protection from oxidative stress is increased upon eIF4A inhibition. We demonstrate that the reduction of these proteins is not due to changes in mRNA levels or increased protein degradation, but is a consequence of translational repression conferred by inhibition of the helicase activity of eIF4A. Inhibition of eIF4A selectively and simultaneously modulates the synthesis of proteins involved in Alzheimer's disease: reducing A-beta and tau synthesis, while increasing proteins predicted to be neuroprotective
    • …
    corecore